3.4.10 \(\int \frac {1}{x^3 (d+e x) \sqrt {a d e+(c d^2+a e^2) x+c d e x^2}} \, dx\)

Optimal. Leaf size=329 \[ \frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a^2 d^3 e^2 x \left (c d^2-a e^2\right )}-\frac {3 \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 a d^2 e x^2 \left (c d^2-a e^2\right )}-\frac {2 e (a e+c d x)}{d x^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.51, antiderivative size = 329, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.150, Rules used = {851, 822, 834, 806, 724, 206} \begin {gather*} -\frac {3 \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac {x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}}+\frac {\left (3 c d^2-5 a e^2\right ) \left (3 a e^2+c d^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 a^2 d^3 e^2 x \left (c d^2-a e^2\right )}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 a d^2 e x^2 \left (c d^2-a e^2\right )}-\frac {2 e (a e+c d x)}{d x^2 \left (c d^2-a e^2\right ) \sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x^3*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(-2*e*(a*e + c*d*x))/(d*(c*d^2 - a*e^2)*x^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - ((c*d^2 - 5*a*e^2)*
Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(2*a*d^2*e*(c*d^2 - a*e^2)*x^2) + ((3*c*d^2 - 5*a*e^2)*(c*d^2 + 3
*a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(4*a^2*d^3*e^2*(c*d^2 - a*e^2)*x) - (3*(c^2*d^4 + 2*a*c*d
^2*e^2 + 5*a^2*e^4)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqrt[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e
^2)*x + c*d*e*x^2])])/(8*a^(5/2)*d^(7/2)*e^(5/2))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 822

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x
)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 851

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + p))/(a/d + (c*x)/e)^m, x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &&
NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && ILtQ[m, 0] && In
tegerQ[n] && (LtQ[n, 0] || GtQ[p, 0])

Rubi steps

\begin {align*} \int \frac {1}{x^3 (d+e x) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx &=\int \frac {a e+c d x}{x^3 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {2 \int \frac {-\frac {1}{2} a e \left (c d^2-5 a e^2\right ) \left (c d^2-a e^2\right )+2 a c d e^2 \left (c d^2-a e^2\right ) x}{x^3 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{a d e \left (c d^2-a e^2\right )^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\int \frac {-\frac {1}{4} a e \left (3 c d^2-5 a e^2\right ) \left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right )-\frac {1}{2} a c d e^2 \left (c d^2-5 a e^2\right ) \left (c d^2-a e^2\right ) x}{x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{a^2 d^2 e^2 \left (c d^2-a e^2\right )^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}+\frac {\left (3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right )\right ) \int \frac {1}{x \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 a^2 d^3 e^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}-\frac {\left (3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a d e-x^2} \, dx,x,\frac {2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 a^2 d^3 e^2}\\ &=-\frac {2 e (a e+c d x)}{d \left (c d^2-a e^2\right ) x^2 \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac {\left (c d^2-5 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 a d^2 e \left (c d^2-a e^2\right ) x^2}+\frac {\left (3 c d^2-5 a e^2\right ) \left (c d^2+3 a e^2\right ) \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 a^2 d^3 e^2 \left (c d^2-a e^2\right ) x}-\frac {3 \left (c^2 d^4+2 a c d^2 e^2+5 a^2 e^4\right ) \tanh ^{-1}\left (\frac {2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt {a} \sqrt {d} \sqrt {e} \sqrt {a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{5/2} d^{7/2} e^{5/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.19, size = 283, normalized size = 0.86 \begin {gather*} \frac {\sqrt {a} \sqrt {d} \sqrt {e} \left (a^3 e^4 \left (2 d^2-5 d e x-15 e^2 x^2\right )-a^2 c d e^2 \left (2 d^3-4 d^2 e x+d e^2 x^2+15 e^3 x^3\right )+a c^2 d^3 e x \left (d^2+5 d e x+4 e^2 x^2\right )+3 c^3 d^5 x^2 (d+e x)\right )-3 x^2 \sqrt {d+e x} \left (-5 a^3 e^6+3 a^2 c d^2 e^4+a c^2 d^4 e^2+c^3 d^6\right ) \sqrt {a e+c d x} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a e+c d x}}{\sqrt {a} \sqrt {e} \sqrt {d+e x}}\right )}{4 a^{5/2} d^{7/2} e^{5/2} x^2 \left (c d^2-a e^2\right ) \sqrt {(d+e x) (a e+c d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x^3*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[a]*Sqrt[d]*Sqrt[e]*(3*c^3*d^5*x^2*(d + e*x) + a^3*e^4*(2*d^2 - 5*d*e*x - 15*e^2*x^2) + a*c^2*d^3*e*x*(d^
2 + 5*d*e*x + 4*e^2*x^2) - a^2*c*d*e^2*(2*d^3 - 4*d^2*e*x + d*e^2*x^2 + 15*e^3*x^3)) - 3*(c^3*d^6 + a*c^2*d^4*
e^2 + 3*a^2*c*d^2*e^4 - 5*a^3*e^6)*x^2*Sqrt[a*e + c*d*x]*Sqrt[d + e*x]*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sq
rt[a]*Sqrt[e]*Sqrt[d + e*x])])/(4*a^(5/2)*d^(7/2)*e^(5/2)*(c*d^2 - a*e^2)*x^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 1.45, size = 256, normalized size = 0.78 \begin {gather*} \frac {\sqrt {a d e+a e^2 x+c d^2 x+c d e x^2} \left (-2 a^2 d^2 e^3+5 a^2 d e^4 x+15 a^2 e^5 x^2+2 a c d^4 e-2 a c d^3 e^2 x-4 a c d^2 e^3 x^2-3 c^2 d^5 x-3 c^2 d^4 e x^2\right )}{4 a^2 d^3 e^2 x^2 (d+e x) \left (a e^2-c d^2\right )}+\frac {3 \left (5 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac {x \sqrt {c d e}-\sqrt {x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{\sqrt {a} \sqrt {d} \sqrt {e}}\right )}{4 a^{5/2} d^{7/2} e^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(x^3*(d + e*x)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]),x]

[Out]

(Sqrt[a*d*e + c*d^2*x + a*e^2*x + c*d*e*x^2]*(2*a*c*d^4*e - 2*a^2*d^2*e^3 - 3*c^2*d^5*x - 2*a*c*d^3*e^2*x + 5*
a^2*d*e^4*x - 3*c^2*d^4*e*x^2 - 4*a*c*d^2*e^3*x^2 + 15*a^2*e^5*x^2))/(4*a^2*d^3*e^2*(-(c*d^2) + a*e^2)*x^2*(d
+ e*x)) + (3*(c^2*d^4 + 2*a*c*d^2*e^2 + 5*a^2*e^4)*ArcTanh[(Sqrt[c*d*e]*x - Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c
*d*e*x^2])/(Sqrt[a]*Sqrt[d]*Sqrt[e])])/(4*a^(5/2)*d^(7/2)*e^(5/2))

________________________________________________________________________________________

fricas [A]  time = 3.72, size = 792, normalized size = 2.41 \begin {gather*} \left [\frac {3 \, {\left ({\left (c^{3} d^{6} e + a c^{2} d^{4} e^{3} + 3 \, a^{2} c d^{2} e^{5} - 5 \, a^{3} e^{7}\right )} x^{3} + {\left (c^{3} d^{7} + a c^{2} d^{5} e^{2} + 3 \, a^{2} c d^{3} e^{4} - 5 \, a^{3} d e^{6}\right )} x^{2}\right )} \sqrt {a d e} \log \left (\frac {8 \, a^{2} d^{2} e^{2} + {\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {a d e} + 8 \, {\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) - 4 \, {\left (2 \, a^{2} c d^{5} e^{2} - 2 \, a^{3} d^{3} e^{4} - {\left (3 \, a c^{2} d^{5} e^{2} + 4 \, a^{2} c d^{3} e^{4} - 15 \, a^{3} d e^{6}\right )} x^{2} - {\left (3 \, a c^{2} d^{6} e + 2 \, a^{2} c d^{4} e^{3} - 5 \, a^{3} d^{2} e^{5}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{16 \, {\left ({\left (a^{3} c d^{6} e^{4} - a^{4} d^{4} e^{6}\right )} x^{3} + {\left (a^{3} c d^{7} e^{3} - a^{4} d^{5} e^{5}\right )} x^{2}\right )}}, \frac {3 \, {\left ({\left (c^{3} d^{6} e + a c^{2} d^{4} e^{3} + 3 \, a^{2} c d^{2} e^{5} - 5 \, a^{3} e^{7}\right )} x^{3} + {\left (c^{3} d^{7} + a c^{2} d^{5} e^{2} + 3 \, a^{2} c d^{3} e^{4} - 5 \, a^{3} d e^{6}\right )} x^{2}\right )} \sqrt {-a d e} \arctan \left (\frac {\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (2 \, a d e + {\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt {-a d e}}{2 \, {\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} + {\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) - 2 \, {\left (2 \, a^{2} c d^{5} e^{2} - 2 \, a^{3} d^{3} e^{4} - {\left (3 \, a c^{2} d^{5} e^{2} + 4 \, a^{2} c d^{3} e^{4} - 15 \, a^{3} d e^{6}\right )} x^{2} - {\left (3 \, a c^{2} d^{6} e + 2 \, a^{2} c d^{4} e^{3} - 5 \, a^{3} d^{2} e^{5}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x}}{8 \, {\left ({\left (a^{3} c d^{6} e^{4} - a^{4} d^{4} e^{6}\right )} x^{3} + {\left (a^{3} c d^{7} e^{3} - a^{4} d^{5} e^{5}\right )} x^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(3*((c^3*d^6*e + a*c^2*d^4*e^3 + 3*a^2*c*d^2*e^5 - 5*a^3*e^7)*x^3 + (c^3*d^7 + a*c^2*d^5*e^2 + 3*a^2*c*d
^3*e^4 - 5*a^3*d*e^6)*x^2)*sqrt(a*d*e)*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 + a^2*e^4)*x^2 - 4*sqrt(c
*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*c*d^3*e + a^2*d*e^3)*x)
/x^2) - 4*(2*a^2*c*d^5*e^2 - 2*a^3*d^3*e^4 - (3*a*c^2*d^5*e^2 + 4*a^2*c*d^3*e^4 - 15*a^3*d*e^6)*x^2 - (3*a*c^2
*d^6*e + 2*a^2*c*d^4*e^3 - 5*a^3*d^2*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x))/((a^3*c*d^6*e^4 - a^
4*d^4*e^6)*x^3 + (a^3*c*d^7*e^3 - a^4*d^5*e^5)*x^2), 1/8*(3*((c^3*d^6*e + a*c^2*d^4*e^3 + 3*a^2*c*d^2*e^5 - 5*
a^3*e^7)*x^3 + (c^3*d^7 + a*c^2*d^5*e^2 + 3*a^2*c*d^3*e^4 - 5*a^3*d*e^6)*x^2)*sqrt(-a*d*e)*arctan(1/2*sqrt(c*d
*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e^2
+ (a*c*d^3*e + a^2*d*e^3)*x)) - 2*(2*a^2*c*d^5*e^2 - 2*a^3*d^3*e^4 - (3*a*c^2*d^5*e^2 + 4*a^2*c*d^3*e^4 - 15*a
^3*d*e^6)*x^2 - (3*a*c^2*d^6*e + 2*a^2*c*d^4*e^3 - 5*a^3*d^2*e^5)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*
x))/((a^3*c*d^6*e^4 - a^4*d^4*e^6)*x^3 + (a^3*c*d^7*e^3 - a^4*d^5*e^5)*x^2)]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: 2*(-2*exp(1)^3/2/d^3/sqrt(-a*d*exp(1)^3+
a*d*exp(1)*exp(2))*atan((-d*sqrt(c*d*exp(1))+(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(
1))*x)*exp(1))/sqrt(-a*d*exp(1)^3+a*d*exp(1)*exp(2)))+(3*a^2*exp(2)^2+4*exp(1)^2*a^2*exp(2)+8*exp(1)^4*a^2+6*c
*d^2*a*exp(2)+3*c^2*d^4)/4/d^3/exp(1)^2/a^2/2/sqrt(-a*d*exp(1))*atan((sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*
exp(2))*x)-sqrt(c*d*exp(1))*x)/sqrt(-a*d*exp(1)))-(-3*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt
(c*d*exp(1))*x)^3*a^2*exp(2)^2-4*exp(1)^2*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))
*x)^3*a^2*exp(2)-6*c*d^2*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)^3*a*exp(2)-3*
c^2*d^4*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)^3+8*d*exp(1)^3*sqrt(c*d*exp(1)
)*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)^2*a^2+5*d*exp(1)*(sqrt(c*d*exp(1)*x^
2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)*a^3*exp(2)^2+4*d*exp(1)^3*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)
+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)*a^3*exp(2)+10*c*d^3*exp(1)*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*e
xp(2))*x)-sqrt(c*d*exp(1))*x)*a^2*exp(2)+8*c*d^3*exp(1)^3*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-
sqrt(c*d*exp(1))*x)*a^2+5*c^2*d^5*exp(1)*(sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*
x)*a-8*d^2*exp(1)^2*sqrt(c*d*exp(1))*a^3*exp(2)-8*d^2*exp(1)^4*sqrt(c*d*exp(1))*a^3-8*c*d^4*exp(1)^2*sqrt(c*d*
exp(1))*a^2)/8/d^3/exp(1)^2/a^2/((sqrt(c*d*exp(1)*x^2+a*d*exp(1)+(c*d^2+a*exp(2))*x)-sqrt(c*d*exp(1))*x)^2-d*e
xp(1)*a)^2)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 414, normalized size = 1.26 \begin {gather*} -\frac {3 c \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{4 \sqrt {a d e}\, a d}-\frac {3 c^{2} d \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{8 \sqrt {a d e}\, a^{2} e^{2}}-\frac {15 e^{2} \ln \left (\frac {2 a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +2 \sqrt {a d e}\, \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{x}\right )}{8 \sqrt {a d e}\, d^{3}}+\frac {2 \sqrt {\left (x +\frac {d}{e}\right )^{2} c d e +\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}\, e^{2}}{\left (a \,e^{2}-c \,d^{2}\right ) \left (x +\frac {d}{e}\right ) d^{3}}+\frac {7 \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{4 a \,d^{3} x}+\frac {3 \sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}\, c}{4 a^{2} d \,e^{2} x}-\frac {\sqrt {c d e \,x^{2}+a d e +\left (a \,e^{2}+c \,d^{2}\right ) x}}{2 a \,d^{2} e \,x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^3/(e*x+d)/(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2),x)

[Out]

7/4/d^3/a/x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)-15/8/d^3*e^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(
a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)-3/4/d/a/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(
a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)*c-1/2/d^2/a/e/x^2*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(
1/2)+3/4/d/a^2/e^2/x*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2)*c-3/8*d/a^2/e^2/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+
c*d^2)*x+2*(a*d*e)^(1/2)*(c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(1/2))/x)*c^2+2/d^3*e^2/(a*e^2-c*d^2)/(x+d/e)*((x+d
/e)^2*c*d*e+(a*e^2-c*d^2)*(x+d/e))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} {\left (e x + d\right )} x^{3}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^3/(e*x+d)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(e*x + d)*x^3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {1}{x^3\,\left (d+e\,x\right )\,\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^3*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)),x)

[Out]

int(1/(x^3*(d + e*x)*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x^{3} \sqrt {\left (d + e x\right ) \left (a e + c d x\right )} \left (d + e x\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**3/(e*x+d)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2),x)

[Out]

Integral(1/(x**3*sqrt((d + e*x)*(a*e + c*d*x))*(d + e*x)), x)

________________________________________________________________________________________